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Abstract—TIterative learning control (ILC) enables a perfect
compensation for systems that perform the same task over and
over again. The aim of this paper is to demonstrate practical
applicability of two various state-of-the-art ILC algorithms to
point-to-point positioning systems. A simple Frequency domain
ILC approach is exploited focusing on systems with exactly
repeating motion tasks. Furthermore, flexible ILC is employed
to enable learning also for non-repeating tasks. Particular steps
providing a seamless transfer from theory and algorithms to
practical implementation in a real-time environment by means
of industrial-grade SW and HW are given. They may serve as
a practical example of a workflow suitable for a wide range of
motion control applications. Potential benefits of the learning-
type control in comparison with conventional feedback and
feedforward control are discussed as well.

Index Terms—iterative learning control, motion control,
frequency-domain ILC, basis-function ILC, advanced feedfor-
ward control, real-time systems

I. INTRODUCTION

Model-based feedforward and learning control are essential
to achieve high-performance for motion systems. Manually
tuned feedforward control is able to compensate for known
exogenous disturbances such as the reference signal. Further-
more, many positioning systems perform repeating motion
tasks where learning algorithms such as Iterative Learning
Control (ILC) can be used to improve performance automati-
cally. ILC enables updating the feedforward signal by learning
from previous motion tasks, and thereby compensating for the
repeating parts of the error [1]. This method is successfully
applied to many high-precision motion systems, see, e.g.,
wafer scanners [2], wire-bonding equipment [3] and printing
systems [4].

Control theory for ILC is well-developed [1], [5]-[7],
however, it is not applicable to motion systems that perform
varying motion tasks. Standard ILC algorithms require
re-learning of the feedforward signals if the reference
changes which is not desired. Recent developments have
extended standard ILC algorithms towards learning for
varying references [8]—[10]. In this approach, the feedforward
signal is parameterized as function of the reference and
basis function. This allows to extrapolate the feedforward
towards varying references, enabling learning feedforward for
a wide range of motion systems performing also varying tasks.
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Although important steps have been made in tailoring ILC
to motion applications, its implementation in industrial control
hardware instead of rapid prototyping equipment requires
additional attention. Most of the state-of-the-art methods are
not well known by practicing control engineers or they are
considered too theoretical, potentially dangerous and inappli-
cable when using standard industrial-grade HW equipment and
corresponding SW development tools. The goal is to show
that the ILC design framework offers some strong theoretical
fundamentals allowing to guarantee stability and convergence
and it can be applied relatively simply using existing software
environments and standard components. A case study of
a generic, possibly varying, point-to-point positioning task
is introduced to demonstrate practical applicability of the
proposed methods and to provide some guidelines for real-
time implementation. Performance benefits are also studied
in comparison with conventional feedback and feedforward
control strategies.

The paper is organized as follows. Section II introduces
some theoretical background of two specific ILC methods
which we consider especially useful for generic motion sys-
tems due to their inherent properties and ease of use. Sec-
tion III discusses the necessary ingredients required for their
successful implementation in real-time control environment.
Section IV presents the flexible manipulator problem which
was chosen as a representative use-case. It describes the
workflow used in the ILC design phase and presents one of the
possibilities of real-time implementation. Achievable closed-
loop performance is compared to the conventional feedback
or feedback plus model-based feedforward control structures.
Concluding remarks and suggestions follow in the last section.

II. ITERATIVE LEARNING CONTROL THEORY

In this section, the standard control framework is introduced.
Furthermore, frequency domain ILC (FD-ILC) and flexible or
basis-functions ILC (BF-ILC) are introduced and notions of
convergence are provided.

A. ILC Setup

Consider the system depicted in Fig. 1 consisting of an
LTI plant P and stabilizing feedback controller C'y;,. All the
signals included in the figure have subscript 7 which refers to
a repetition of the signal r, also denoted as a task.
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Fig. 1. Control Setup for Frequency Domain ILC.

B. Frequency domain ILC

Frequency-domain ILC is a convenient method from a de-
sign point of view as shown in this section, however, it may be
restrictive since it is assumed that r; = 7,41, i.e., the tasks are
exactly repeating. The goal of the ILC algorithm is to compute
the feedforward signal f;, such that the error converges in the
task domain, i.e., eo = limj_, e; = 0, where the error at
task j is given by

€; :S’l’j —PSfj, €))

and S = (I+ PCfb)fl.
Typically, the following update is used to compute the
feedforward signal for the next task,

fiv1 = Q(f; + Lej), (2)

where e; is the error in the previous task, f; is the previous
feedforward signal and @) and L are to be designed filters. Note
that L and () can be non-causal since the update depends on
signals from the previous task, i.e., L,Q € RL.

To gain insight in the design of () and L consider the closed-
loop error propagation by substituting (1) in (2) resulting in,

ejr1 = Q(1 — PSL)@j + (1 — Q)ST 3)

Furthermore, it can be shown that the error converges mono-
tonically w.r.t. its 2-norm if the following condition is satisfied

QE™)(1 = P(e)S(e™) L(e))| < 1,Vw € [0,27]  (4)

for more details see, e.g., [1], [11].

Design of the FD-ILC follows along the following three
steps as outlined in [12], [13];
(1) Obtain an approximate model of PS denoted with PS
The aim is to find an approximate parametric model of PS that
is required in the subsequent steps. This can be a parametric
fit obtained from frequency domain measurement data.
(2) Design the learning filter L ~ PASA.
To obtain the optimal performance, i.e., have e,, — 0 one
must satisfy that

L=(PS)™" and Q=1 (5)

such that the error (3) becomes zero. However, because of
model errors and inversion errors obtaining an exact inverse
is not possible in practice, hence the aim is to approximate
(PS)!, ie., design L ~ (PS)~!. For non-minimum phase
system, additional care must be taken, see [14].
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Fig. 2. Control Setup for Flexible ILC.

(3) Design the robustness filter ().

In this final step, the robustness filter () is designed to
compensate for model error and assure that the convergence
condition (4) is satisfied for all frequencies. Usually a low-
pass type characteristics is needed to accomplish that. In this
condition, the filter L(e’“) is designed using the parametric
model, and the true frequency response data of the plant will
be used to check convergence. Hence, if () deviates from 1
then essentially learning is cut-off for that frequency to ensure
convergence of the algorithm at the expense of larger error
after convergence.

C. Flexible ILC

The previously described FD-ILC algorithm is relatively
easy to design and allows to check for monotonic convergence
based of FRF data. The main disadvantage of this method
is that the reference must be the same each task, otherwise
performance may even deteriorate and the learning has to
start over again. In this section, a brief description of BF-ILC
will be provided which enables learning if r; # ;11 without
having to re-learn, see as observed in the experimental results
in Fig. 11.

Consider the control setup used for flexible ILC as depicted
in Fig. 2, where the feedforward signal is parameterized as
function of the reference through ¥ in combination with
feedforward parameters ;. Instead of optimizing the signal
f;, the basis functions ¥ are fixed and the parameters 6; are
optimized. The feedforward signal becomes

fi=(r)8; (6)
where 0; are the parameters in task j, and
=[P o Y] € RV (7)

contains the m basis functions and N is the length of the
task. To optimize the feedforward parameters the following
cost function is minimized

T O54+1) = llejrilliy, + 1 fiealliy, + 141 = fillfva, ®

A weight can be set on the error signal, feedforward signal and
the learning rate by the weighting matrices W, Wy and Wa ¢
respectively. Next, the ugdate of the feedforward parameters

is computed by solving %ﬁ” = 0 to which the solution is
given by
011 = Q0; + Lej, )
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where

L=Tv"J"w,,
Q=TU"(JTW.J+Wa;)V¥,

(10)
(1)

and T = (T (JTW,.J + Wy + Wap)¥) "', and J € RV*N
is the convolution matrix of P.S. Note that this method is also
often referred to as optimal ILC since the matrices ) and
L follow from an optimization problem rather than manual
tuning. Furthermore, it is worth mentioning that in this case
the matrices ( and L can be time-varying which is not the
case in the frequency domain implementation where ¢ and L
are LTI filters.

III. REAL-TIME IMPLEMENTATION ASPECTS

The ILC framework is built upon some strong theoretical
results giving essential statements about stability and perfor-
mance of the whole learning process. This is an important
prerequisite for application in industry which calls for guar-
anteed solutions and repeatable behavior due to safety rea-
sons. Although quite theoretically complex concepts may be
required to study ILC design methods and their properties, e.g.
by means of operator theory, functional analysis, 2D systems,
anti-causal filtering, optimal control etc., the final algorithm
suitable for practical implementation may be relatively simple
and straightforward to use.

The key problem from the implementation point of view is
to correctly define the behavior of the learning process and the
way of its interaction with the standard feedback loop. This
can be achieved by using three basic components available in
most of the software environments for control system design:

« Finite state machine
The ILC algorithm uses multiple realizations of a repet-
itive task to recursively improve the learned feedfor-
ward signal which is injected into the feedback loop.
A state machine which switches between the “learning”
and “trial” modes of operation and ensures their proper
synchronization is needed. Most of the SW tools intended
for industrial control contain a support for the definition
of finite-state automata. The usual form is the Sequential
function chart (SFC), a graphical programming language
based on Petri nets, which is one of the five programming
languages defined by the IEC 61131-3 standard for PLC
programming. It is missing in some simple platforms
but it can be substituted by basic logic circuits, memory
elements and flip-flops available in more low-level lan-
guages. An example of the control logic used for the real-
time implementation is shown in the simplified diagram
in Fig. (7).
« 1D array

The ILC methods work with the stored samples of a
performance variable (usually the tracking error) which
must be stored in memory for further processing. A sim-
ple 1D buffer (array) may serve for this purpose. When
dealing with memory problems, the learning step may
be realized in other device than the control HW itself,

Fig. 3. Flexible arm testbed - mechanical setup used for the experiments

e.g. in a supervisory PLC or a dedicated computer which
communicates the signals necessary for the feedforward
adaptation in both directions.

« Functional block/subroutine with for-cycles definition
This part takes care of the sequential processing of the
sampled data. It implements the learning and robustness
filters introduced in Section II which are used for auto-
matic adaptation of the feedforward signal in a recursive
manner. A simple for-cycle and basic algebraic operations
are sufficient for this purpose.

The REXYGEN software tool was chosen for implementing
the ILC algorithms in the provided use-case study. It serves as
an example of an industry-oriented platform for rapid control
system development [15] providing the tooling for graphical
programming of control algorithms with a minimum of hand
coding. Most of the application software can be realized by
means of provided standard functional blocks library. The
functional blocks are connected via oriented information links
in the same manner as in the well-known Matlab/Simulink
environment or Functional block diagrams language in the
PLC world. Specific functionalities may be implemented in
a C-like scripting language by means of a user-programmable
REXLANG block. The next section provides the guidelines
for the design and implementation phases. They are directly
transferable to other SW platforms supporting the above
mentioned elementary components.

IV. CASE STUDY: OPTIMIZATION OF REPEATING
MANIPULATION TASK

A mechanical testbed representing a generic motion axis
was chosen for the purpose of demonstration of the proposed
algorithms and design methodology (Fig. 3). The mechanical
part consists of a flexible coupling, bearing housing, flywheel
inertia and removable flexible arm with adjustable load mass.
There is one degree of freedom allowing the arm to rotate
around the vertical axis. The setup is driven by an electrical
drive (500W permanent magnets synchronous servomotor)
controlled by a TGDrives frequency inverter realizing the
current control loop by means of standard field oriented
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control algorithm. A supervisory control system implements
the position control loop, the ILC algorithms and auxiliary
logic control of the whole testbed. Standard B&R industrial
PC running real-time Linux and REXYGEN control software
was used [15].

The testbed can exhibit diverse dynamic characteristics
based on the particular configuration of its mechanical ele-
ments. In our particular case, a single resonance dynamics was
chosen and the problem of point-to-point positioning aiming at
highest achievable accuracy of reference trajectory (9) tracking
was chosen for the evaluation of the developed ILC strategies.

A. Model-based control design

A model of the controlled plant is obtained by conducting
experiments where a sequence of pseudo-random signals with
a fixed amplitude is used as input to the system. This exci-
tation input displays similar characteristics as a white noise
sequence, implicating that the generated signals are a series
of uncorrelated successive samples. Nonparametric frequency
response function (FRF) model is derived using the Welch’s
method of windowed and averaged periodograms. Using this
data, a model fit is made, which can be seen in Fig. 4. The
position controller is chosen as a 2-DoF PID controller with
the control law given in the standard ISA form as:

Td S

%s+1

U(s) = K [bW(s) —Y(s) + %E(S) + (eW(s) =Y(s)],
12)
where U, W,Y, E denote the Laplace images of controller
output, setpoint reference, measured output and tracking error
and K, T;, Ty, N, b, c are the controller parameters which were

tuned using loop-shaping techniques.

B. Model-based feedforward control

Conventional feedforward control can be applied in order
to reduce the tracking error, thus increasing the error tracking
performance of the system. Ideally, the feedforward signal
should resemble the setpoint reference filtered through the
inverse of the plant dynamics f = P~lr, as this will lead
to perfect tracking. However, due to e.g. model errors, inexact

or unstable inverse this cannot be achieved in practice. The
error norm is reduced by a factor of ten as shown in Fig. 10
when using an approximate stable inverse of the plant model
for filtering the reference signal.

C. Advanced feedforward using ILC

The tracking performance can be improved further by
applying the mentioned learning feedforward methods.

1) FD-ILC: For the FD-ILC method it is chosen to imple-
ment ILC in serial realization which is beneficial when dealing
with integrator windup problem due to the sensor noise (see
e.g. [16]). To apply FD-ILC to the system, the learning filter
L should be constructed as the inverse of the complementary
sensitivity L = T~! instead of the plant sensitivity PS.
This inversion can be derived by using the Zero Phase Error
Tracking Control algorithm (ZPETC) [17] which ensures that
the resulting filter is stable and a desirable zero-phase property
of the product ZT'L = 0 Vw is achieved. The learning filter
can be split into a causal part L. and a finite preview term:

L=zrtif, (13)

where d corresponds to the pure delay in 7" and p corresponds
to the number of its unstable zeros. In Figure 5, T, L. and L
are presented in a bode diagram, which shows the phase effects
of the non-causality of L. To realize the non-causal filtering
of the error signal, the signal is first filtered with the causal
filter, and afterwards shifted in time to achieve non-causality.
This is realized by performing the time shift as in:

Tne = [Te(p+d+1),...,2(N),0p4q] (14)

where xz. is the error filtered by the causal filter L.. By
applying the time shift, x,. now becomes the error signal
filtered through the non-causal filter L. To achieve a similar
signal length, the signal is padded with zeros equal to the
amount of preview samples.

The robustness filter () can be implemented as a discrete
FIR system. This ensures that a simple discrete convolution
operation can be used in order to filter the signal. Non-causal
filtering can be achieved since the whole sequence of relevant
signals f;,e; in (2) is known in advance in each learning
update. This allows to exploit a desirable zero-phase property
of the @ filter, see e.g. [18]. For the implementation of the
robustness filter in this work, a lowpass filter is used to
filter out unwanted high frequencies and a bandstop to filter
out unwanted bending mode dynamics due to the flexible
coupling at the motor. This filter is represented in Figure 6.

The previously described steps can be performed in real-time
relatively easy with a few function blocks to implement
the ILC algorithm. A finite state machine as visualized in
Figure 7 regulates the calculations in the ILC domain, and
applies the calculated feedforward in the trial domain. Figure
8 presents three function blocks that are used to perform
the ILC algorithm. The upper left function block is a state
space representation of the causal filter L. from (13). The
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ATMT function block acts as a finite state machine that
regulates the switch between the learning and trial domain.
The REXLANG function block acts as a data buffer, and
performs the time shift to achieve non-causal filtering, and the
filtering through (). Subsequently, after these calculations are
performed, the learned feedforward is stored and injected to
the feedback loop (PIDU block in Fig. 8) during the motion
task.
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2) BF-ILC: In order to design the basis-functions ILC an
appropriate basis ¥ has to be chosen. In this work, ¥ is chosen
to contain the following functions of the reference r (see e.g.
[19] for the detailed discussion):

U=1[r 7 ¥ sign(r) (15)

Figure 9 presents a visualization of the basis ¥. The second,
third and fourth term in this basis compensate for the viscous
friction, lack of force to accelerate and the coulomb friction
respectively. The first term compensates for the reference,
which is needed due to the usage of the 2-DoF PID controller.
This basis W is used in order to construct L and () as in
(10) and (11). The learning update is performed trough matrix
calculations (9), where the Q and L matrices are loaded into
the memory before the first iteration. The feedforward action
is generated subsequently by means of chosen basis functions
as f; = V0;. In real-time, these steps are performed similarly
as previously described for the FD-ILC.

D. Comparison of the proposed control strategies

Figure 10 compares the two different ILC control methods
to conventional feedforward and conventional feedback con-
trol. It can be seen that both FD-ILC and BF-ILC improve the
performance in terms of minimizing the norm of the tracking
error. The FD-ILC outperforms the BF-ILC in case of exactly
repeating task. This is mainly due to the limited class of
feedforward action which can be generated as a linear combi-
nation of the chosen basis-functions (6). Perfect compensation
is unattainable if the basis does not match the disturbance
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Fig. 11. Comparison of the 2-norm of the error for experiments with BF-ILC,
FD-ILC and only feedback for varying references. The reference changes at
the 5th and 10th iteration.

and plant characteristics exactly. FD-ILC is not subject to this
problem. Figure 11 presents the results of the experiments
with iterations that are subject to varying references. The
point-to-point trajectory was modified twice by changing the
final position and maximum velocity/acceleration limits (see
trials Nr. 5 and 10 in Fig. 11). The norm of the error for the
FD-ILC increases significantly, it may even exceed the value
achieved without the feedforward compensation. The BF-ILC
shows only a slight increase of the error norm at the iterations
where the reference is changed. The results indicate that FD-
ILC is preferable for constant tasks. If robustness against
varying tasks is required, the BF-ILC method achieves much
better results at the cost of worse steady state performance.
Concluding from these results, the employment of both ILC
methods shows a significant improvement in terms of the
tracking error.

V. CONCLUSIONS

The paper deals with two iterative learning control methods
which are employed in a generic motion control scenario
aiming at optimization of the achieved tracking performance.
It is shown that the ILC algorithms can be implemented quite
easily with the use of few basic building blocks which are
readily available in existing industrial HW and SW platforms.
Experimental case study demonstrates achievable performance
improvement compared to the conventional feedback and
model-based feedforward control. The scope of the ILC frame-

work is much broader than indicated here and involves other
important aspects such as multi-variable systems, parameter
varying dynamics, optimal design or more complex basis
function parameterizations. Some of these issues are addressed
in the provided list of references.
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